
Appendix DD

The Angular Momentum Operators

GENERALIZATION OF THE QUANTUM RULES

The quantum rules given in Chapter 3 may be generalized to three dimensions. The position of a particle in three dimensions
can be represented by a vector r, which extends from the origin to the particle, while the momentum of a particle moving
in three-dimensional space is represented by a vector p, which points in the direction of the particle’s motion.

For a particle moving in three dimensions, the operator associated with the momentum, which we denote by p̂, is defined
to be

p̂ = −i�∇, (DD.1)

where∇ is the gradient operator discussed in Appendix AA. The gradient of a function is a vector that points in the direction
in which the function changes most rapidly and has a magnitude equal to the rate of change of the function in that direction.
It is the natural generalization of the concept of the derivative to three dimensions.

The expression for the energy in three dimensions is

E = 1

2m
p2 + V(r), (DD.2)

where p and r are the momentum and radius vectors. Substituting the momentum operator (DD.1) into Eq. (DD.2) for the
energy leads to the following Hamiltonian operator

Ĥ = −�
2

2m
∇2 + V(r), (DD.3)

where ∇2 is the Laplacian operator discussed in Appendix F.
Once one has constructed an operator O corresponding to a variable of a microscopic system, the wave function of the

system and the possible values that can be obtained by measuring the variable are determined by forming the eigenvalue
equation

Oψ(r) = λψ(r). (DD.4)

As for the eigenvalue problems considered in Chapter 3, the values of λ, for which there is a solution of Eq. (DD.4)
satisfying the boundary conditions, are the possible values that can be obtained in a measurement of the variable. The wave
function ψ(r) describes the system when it is in a state corresponding to the eigenvalue λ.

COMMUTION RELATIONS

The operators used in quantum mechanics to represent physical variables satisfy certain algebraic relations. Recall that the
commutator of two operators, A and B, was defined in Section 3.2 by the equation

[A,B] = AB− BA. (DD.5)

In this appendix, we shall discard the carrot symbol (ˆ) associated with operators denoting the operator corresponding to
a variable with the same symbol used to denote the variable itself. The operator corresponding to the x-component of the
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momentum, for instance, will be denote simply as px. With this notation the commutation relation between x and px, which
is given in Section 3.2, is written

[x, px] = i�. (DD.6)

Other commutation relations can be obtained from this relation by making the cyclic replacements, x → y, y → z, z → x.
This leads to the additional commutation relations

[y, py] = i�, [z, pz] = i�. (DD.7)

We recall that the commutators that can be formed with one component of the position vector r and another component of
the momentum operator p are equal to zero. For instance, we have

[x, py] = 0. (DD.8)

The commutators formed from two components of the position vector or two components of the momentum are also zero.
As discussed in AppendixAA, the operator corresponding to the orbital angular momentum can be obtained by replacing

the momentum p in the defining equation for the angular momentum,

l = r × p, (DD.9)

with the operator (DD.1) to obtain

l = −i� r × ∇. (DD.10)

We shall now derive commutation relations for the angular momentum operators. These commutation relations will then
be used to derive the spectra of eigenvalues of the angular momentum. To make it easier for us to evaluate the commutators
of the angular momentum operators, we first derive a few general properties of the commutation relations of operators,
which we denote by A, B, and C. Using the definition of the commutator (DD.5), we may write

[A, (B+ C)] = A(B+ C)− (B+ C)A = AB+ AC − BA− CA
= (AB− BA)+ (AC − CA).

(DD.11)

The two terms appearing within parentheses on the right may be identified as the commutators, [A,B] and [A,C]. We
thus have

[A, (B+ C)] = [A,B] + [A,C]. (DD.12)

One may prove in a similar fashion that

[(A+ B),C] = [A,C] + [B,C]. (DD.13)

The commutation relations can thus be said to be linear.
We next consider the commutation [A,BC]. Again, we use the definition of the commutator (DD.5) to obtain

[A,BC] = ABC − BCA. (DD.14)

Subtracting and adding the term BAC after the first term on the right, we have

[A,BC] = ABC − BAC + BAC − BCA
= (AB− BA)C + B(AC − CA).

(DD.15)

Again, identifying the two terms within parentheses on the right as the commutators, [A,B] and [A,C], we have

[A,BC] = [A,B]C+ B[A,C]. (DD.16)

Similarly, one may prove that

[AB,C] = A[B,C] + [A,C]B. (DD.17)

These last two commutation relations can be described in simple terms. The commutator of a single operator with the
product of two operators can be written as a sum of two terms involving the commutator of the single operator with each of
the operators of the product. For each of these terms, the operator not appearing in the commutator is pulled to the front or
the back to preserve the order of the operators within the product. In the first term on the right-hand side of Eq. (DD.16), the
operator C is pulled to the back, while in the second term on the right, the operator B is pulled to the front. In the two terms
of the resulting equation, B appears before C. Similarly, in the first term on the right-hand side of Eq. (DD.17), the operator
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A is pulled to the front so that it appears before B, while in the second term, B is pulled to the back so that it appears after
A.

We now evaluate the commutator [lx, ly] involving the x- and y-components of the angular momentum operator l. Using
the definition of the orbital angular momentum given by Eq. (DD.9), the x-component of the angular momentum operator
can be seen to be lx = ypz − zpy and the y-component may be seen to be ly = zpx − xpz. We may thus use Eq. (DD.12) to
obtain

[lx, ly] = [lx, zpx − xpz] = [lx, zpx] − [lx, xpz]
= [(ypz − zpy), zpx] − [(ypz − zpy), xpz].

(DD.18)

Using Eq. (DD.13), this becomes

[lx, ly] = [ypz, zpx] − [zpy, zpx] − [ypz, xpz] + [zpy, xpz]. (DD.19)

We now note that of the commutators that can be formed from the operators on the right-hand side of the above equation, the
commutators, [x, px], [y, py], and [z, pz], are each equal to i�. All other commutators are equal to zero. Omitting the second
and third terms on the right-hand side of Eq. (DD.19), which do not contain operators having a nonzero commutator, the
equation becomes

[lx, ly] = [ypz, zpx] + [zpy, xpz]. (DD.20)

The commutators on the right-hand side of this equation may be evaluated as we have described following Eqs. (DD.16)
and (DD.17). For the first term on the right-hand side, we pull y to the front and px to the back giving y[pz, z]px. Similarly,
for the second term on the right, we pull x toward the front and py toward the back giving x[z, pz]py. Equation (DD.20) then
becomes

[lx, ly] = y[pz, z]px + x[z, pz]py. (DD.21)

Like the commutator [x, px], the commutator [z, pz] is equal to i�. The commutator [pz, z], for which the operators pz and z
are interchanged, is equal to −i�. We thus obtain

[lx, ly] = i�(xpy − ypx). (DD.22)

The term within parentheses on the right may be identified as lz and hence the equation may be written

[lx, ly] = i�lz. (DD.23)

The commutation relations (DD.23) assume a more simple form if the angular momentum is measured in units of �.
Commutation relations for the new angular momentum operators can be obtained by dividing Eq. (DD.23) by �2 to obtain

[(lx/�), (ly/�)] = i(lz/�). (DD.24)

If the orbital angular momentum is measured in units of �, the angular momentum operators thus satisfy the commutation
relations

[lx, ly] = ilz. (DD.25)

The orbital angular momentum is then represented by the operator �l. Other commutation relations can be obtained from
Eq. (DD.25) by making the cyclic replacements, x → y, y → z, and z → x.

We consider now the commutation relation involving lz and the operator,

l2 = lxlx + lyly + lzlz. (DD.26)

Using Eqs. (DD.12), we may write

[lz, l2] = [lz, lxlx + lyly + lzlz] = [lz, lxlx] + [lz, lyly] + [lz, lzlz]. (DD.27)

We now use Eq. (DD.16) and take advantage of the fact that lz commutes with itself to write

[lz, l2] = lx[lz, lx] + [lz, lx]lx + ly[lz, ly] + [lz, ly]ly. (DD.28)

We now note that the commutators in the first and second terms are in cyclic order, while the commutators in the third and
fourth terms are not in cyclic order. The above equation thus becomes

[lz, l2] = i[lxly + lylx − lylx − lxly = 0. (DD.29)
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We thus find that the operators l2 and lz commutewith each other. In quantum theory, commuting operators corresponding
to variables that can be accurately measured simultaneously. It is generally possible to find simultaneous eigenfunctions for
such variables. The common eigenfunctions represent states of the system in which the variables corresponding to the
operators have definite values. It is easy to find physical examples of these results. For the hydrogen atom, the states of
the electron are described by the quantum numbers, l and ml, corresponding to well-defined values of both l2 and lz. In a
magnetic field the magnetic moment and the angular momentum of an electron precess about the direction of the magnetic
field with the magnitude of the angular momentum and the projection of the angular momentum upon the direction of the
magnetic field having constant values.

The definition of the angular momentum by Eq. (DD.9) does not apply to the spin. We shall require, though, that the
components of the spin angular momentum satisfy commutation relations analogous to Eq. (DD.25). We have

[sx, sy] = isz. (DD.30)

It is thus convenient to regard the commutation relations between the components of the angular momentum operators as
the definition the angular momentum. Analogous commutations relations apply to the components of the orbital and spin
angular momentum and to the components of the total angular momentum.

SPECTRUM OF EIGENVALUES

We conclude this appendix by showing that the commutation relations of the angular momentum operators determine the
spectrum of eigenvalues of these operators. Our arguments will be very general applying to any angularmomentum operator.
Using the symbol j to denote an angular momentum operator, the commutation relations satisfied by the components of the
angular momentum operators may be obtained by writing j in place of l in Eq. (DD.25) or j in place of s in Eq. (DD.30)
giving

[jx, jy] = ijz. (DD.31)

The symbol j denotes the angular momentum operator in units of �. As for the orbital angular momentum operators
considered previously, the operator jz commutes with the operator

j2 = jxjx + jyjy + jzjz. (DD.32)

We have

[jz, j2] = 0. (DD.33)

Eq. (DD.33) can be derived as before from the commutation relation (DD.31) and the other commutation relations obtained
from this basic equation by making the cyclic replacements, jx → jy, jy → jz, and jz → jx .

Since the operators, j2 and jz, commute, they have a common set of eigenfuctions. Denoting a typical eigenvalue of j2

by μ and an eigenvalue of jz by μz, we denote the simultaneous eigenfunctions of j2 and jz by ψ(μ,μz). These functions
satisfy the eigenvalue equations,

j2ψ(μ,μz) = μψ(μ,μz) (DD.34)

and

jz ψ(μ,μz) = μzψ(μ,μz). (DD.35)

In order to study the properties of the angular momentum eigenfunctions, we introduce new operators by the equations

j+ = jx + i jy (DD.36)

and

j− = jx − i jy (DD.37)

Since j+ and j− are linear combinations of jx and jy, and since jx and jy commute with j2, j+ and j− must also commute
with j2. One may easily confirm this result using the defining Eqs. (DD.36) and (DD.37) together with Eq. (DD.13).

In order to evaluate the commutation relation of jz with j+, we first use Eqs. (DD.36) and (DD.12) to write the commutator
as follows

[jz , j+] = [jz, (jx + ijy)]
= [jz, jx] + i[jz, jy]

(DD.38)
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The commutation relation satisfied by the components of the angular momentum may then be used to obtain

[jz , j+] = ijy + jx. (DD.39)

The above equality can be written

[jz, j+] = j+. (DD.40)

The commutator of jz with j− may be evaluated in a similar way. We obtain

[jz , j−] = −j−. (DD.41)

In order to evaluate the operator product j+j−, we first use the definitions, (DD.37) and (DD.36), to write

j−j+ = (jx − ijy)(jx + ijy)
= j2x + j2y + i[jx, jy]
= j2 − j2z + i[jx, jy].

(DD.42)

We then use the commutation relations (DD.31) to obtain

j−j+ = j2 − j2z − jz. (DD.43)

Similarly, the product j+j− may be evaluated giving

j+j− = j2 − j2z + jz. (DD.44)

Operating now on the eigenvalue equation (DD.34) with j+ and using the fact that j+ and j2 commute, we obtain

j2j+ψ(μ,μz) = μj+ψ(μ,μz). (DD.45)

The function j+ψ(μ,μz) is thus also an eigenfunction of j2 corresponding to the eigenvalue μ. Similarly, multiplying the
eigenvalue equation (DD.35) by the operator j+ gives

j+jzψ(μ,μz) = μzj+ψ(μ,μz). (DD.46)

We may now use the definition of the commutator of two operators and Eq. (DD.40) to write

j+ jz = jz j+ − [jz, j+] = jz j+ − j+. (DD.47)

Substituting this expression for j+jz into Eq. (DD.46) and bringing the term with j+ over to the right-hand side of the
equation, we then obtain

jzj+ψ(μ,μz) = (μz + 1)j+ψ(μ,μz). (DD.48)

The function j+ψ(μ,μz) is thus an eigenfunction of jz corresponding to the eigenvalueμz + 1. So, operating on the function
ψ(μ,μz) with j+ gives a new eigenfunction belonging to the same eigenvalue of j2 but to the eigenvalue (μz + 1) of jz. By
repeatedly operatingwith j+ onψ(μ,μz), we can generate a whole series of eigenfunctions of jz belonging to the eigenvalues
μz,μz + 1,μz + 2, . . . and all belonging to the eigenvalue μ of j2. For this reason, j+ is called a step-up operator.

Equations similar to Eqs. (DD.45) and (DD.48) may be derived by multiplying the eigenvalue equations (DD.34) and
(DD.35) by j−. We have

j2j−ψ(μ,μz) = μj−ψ(μ,μz), (DD.49)

jz j−ψ(μ,μz) = (μz − 1)j−ψ(μ,μz). (DD.50)

The function j−ψ(μ,μz) is an eigenfunction of j2 corresponding to the eigenvalueμ and an eigenfunction of the operator jz
corresponding to the eigenvalue (μz − 1). The operator j− may thus be thought of as a step-down operator.

We now determine the possible values of μ and μz. For a definite value of μ, there must be a limit to how large or how
small μz can become. The eigenvalueμ gives the square of the length of the vector j, while μz is the projection of the vector
j upon the z-axis. The projection of a vector upon the z-axis cannot be larger than the length of the vector itself. We denote
the maximum eigenvalue of jz by j and the eigenfunction corresponding to the maximum eigenvalue byψ(μ, j). Multiplying
the function ψ(μ, j) by j+ must give zero

j+ψ(μ, j) = 0. (DD.51)
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For, otherwise, j+ψ(μ, j) would be an eigenfunction of jz corresponding to the eigenvalue j+ 1. We note that setting
j+ ψ(μ, j) equal to zero gives a solution to Eqs. (DD.45) and (DD.48). Substituting the value of j− in Eq. (DD.51) gives

j−j+ψ(μ, j) = 0. (DD.52)

Using Eq. (DD.43), the above equation can be written

(μ− j2 − j)ψ(μ, j) = 0. (DD.53)

Since the function ψ(μ, j) cannot vanish at all points, it follows that

μ = j(j+ 1). (DD.54)

Similarly, let (j− r) be the least eigenvalue of jz. Then it follows that

j−ψ(μ, j− r) = 0. (DD.55)

and

j+j−ψ(μ, j− r) = 0. (DD.56)

Using Eq. (DD.44), then leads to the equation

[μ− (j− r)2 + (j− r)]ψ(μ, j− r) = 0, (DD.57)

and we must have

μ− (j− r)2 + (j− r) = 0. (DD.58)

Substituting the value of μ given by Eq. (DD.54) into this last equation leads to the quadratic equation

r2 − r(2j− 1)− 2j = 0. (DD.59)

which has only one positive root, r = 2j. Thus, the least eigenvalue of jz is equal to j− r = −j. This means that for a
particular eigenvalue μ = j(j+ 1) of j2, there are 2j+ 1 eigenfunctions ψ(μ,m) of jz corresponding to the eigenvalues

m = j, j− 1, . . . ,−j+ 1,−j. (DD.60)

It is also clear from the above argument that 2j must be an integer, which means that the quantum number j of the angular
momentum must be an integer or a half-integer.

Using commutation relations of the angular momentum operators, we have thus shown that the eigenvalues of j2 are
j(j+ 1) where j may an integer or half-integer. For a particular value of j, the eigenvalues of jz are m = j, j− 1, . . . ,−j.
Denoting the simultaneous eigenfunctions of j2 and jz by the quantum numbers, j and m, the eigenvalue equations become

j2ψ(jm) = j(j+ 1)ψ(jm), (DD.61)

jzψ(jm) = mψ(jm). (DD.62)

The operators j2 and jz give the square of the angular momentum operator and the z-component of the angular momentum
in units of �. The operators, (�j)2 and �jz, which represent the angular momentum in an absolute sense, have eigenvalues
j(j+ 1)�2 and m�.

The general results we have obtained for the angular momentum can be applied to the orbital and spin angular momenta.
The operator corresponding to the square of the orbital angular momentum, which we have denoted previously by l2, has
eigenvalues l(l+ 1)�2. For a given value of l, the z-component of the orbital angular momentum, which we denote by lz,
has the values ml�, whereml = −1,−l+ 1, . . . , l. The spin quantum number of the electron has the value s = 1/2 with the
eigenvalues of the spin operator s2 being (1/2) · (3/2)�2 and the spin operator sz has eigenvalues ±(1/2)�.


